Ind – varieties of generalized flags as homogeneous spaces for classical ind – groups Ivan Dimitrov and Ivan Penkov

نویسندگان

  • Ivan Dimitrov
  • Ivan Penkov
چکیده

The purpose of the present paper is twofold: to introduce the notion of a generalized flag in an infinite dimensional vector space V (extending the notion of a flag of subspaces in a vector space), and to give a geometric realization of homogeneous spaces of the ind–groups SL(∞), SO(∞) and Sp(∞) in terms of generalized flags. Generalized flags in V are chains of subspaces which in general cannot be enumerated by integers. Given a basis E of V , we define a notion of E–commensurability for generalized flags, and prove that the set Fl(F , E) of generalized flags E–commensurable with a fixed generalized flag F in V has a natural structure of an ind–variety. In the case when V is the standard representation of G = SL(∞), all homogeneous ind–spaces G/P for parabolic subgroups P containing a fixed splitting Cartan subgroup of G, are of the form Fl(F , E). We also consider isotropic generalized flags. The corresponding ind–spaces are homogeneous spaces for SO(∞) and Sp(∞). As an application of the construction, we compute the Picard group of Fl(F , E) (and of its isotropic analogs) and show that Fl(F , E) is a projective ind–variety if and only if F is a usual, possibly infinite, flag of subspaces in V .

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Triviality of Vector Bundles on Sufficiently Twisted Ind-grassmannians

Twisted ind-Grassmannians are ind-varieties G obtained as direct limits of Grassmannians G(rm, V m), for m ∈ Z>0, under embeddings φm : G(rm, V m) → G(rm+1, V m+1) of degree greater than one. It has been conjectured in [PT] and [DP] that any vector bundle of finite rank on a twisted ind-Grassmannian is trivial. We prove this conjecture under the assumption that the ind-Grassmannian G is suffici...

متن کامل

A Bott-Borel-Weil theory for direct limits of algebraic groups

We develop a Bott-Borel-Weil theory for direct limits of algebraic groups. Some of our results apply to locally reductive ind-groups G in general, i.e., to arbitrary direct limits of connected reductive linear algebraic groups. Our most explicit results concern root-reductive ind-groups G, the locally reductive ind-groups whose Lie algebras admit root decomposition. Given a parabolic subgroup P...

متن کامل

Partially Integrable Highest Weight Modulesivan Dimitrov and Ivan

We prove a more general version of a result announced without proof in DP], claiming roughly that in a partially integrable highest weight module over a Kac-Moody algebra the integrable directions form a parabolic subalgebra.

متن کامل

Finite rank vector bundles on inductive limits of grassmannians

If P is the projective ind-space, i.e. P is the inductive limit of linear embeddings of complex projective spaces, the Barth-Van de Ven-Tyurin (BVT) Theorem claims that every finite rank vector bundle on P is isomorphic to a direct sum of line bundles. We extend this theorem to general sequences of morphisms between projective spaces by proving that, if there are infinitely many morphisms of de...

متن کامل

Locally semisimple and maximal subalgebras of the finitary Lie algebras gl ( ∞ ) , sl ( ∞ ) , so ( ∞ ) , and sp ( ∞ )

We describe all locally semisimple subalgebras and all maximal subalgebras of the finitary Lie algebras gl(∞), sl(∞), so(∞), and sp(∞). For simple finite–dimensional Lie algebras these classes of subalgebras have been described in the classical works of A. Malcev and E. Dynkin.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2004